

14th South East Asia Survey Congress15-17 August 2017Brunei Darussalam

Introduction of Positioning Augmentation Center for High Precision Application in Brunei Darussalam

Muhammad Aisamuddin HJ ABD RAZAK*, Adam Leslie On ABDULLAH*, Yasushi SAKURAI**, and Naohiro UKAI*** * Soartech Systems, Brunei Darussalam ** Satellite Positioning Research and Application Center, Japan ***JENOBA CO.,LTD, Japan

1. Introduction

- Satellite based centimeter class augmentation system
- Application Demonstration
- 2. How does Geospatial Information work in Brunei?
- 3. Introduction of "Positioning Augmentation Center"
 - What is "Positioning Augmentation Center"?
 - Data Generation and Distribution
- 4. Typical design of Augmentation Data Center
- 5. Conclusion

1. Introduction

- High precision augmentation system is very much promising technology in coming Multi-GNSS era when more than 100 navigation satellites would be available.
- Application of Centimeter class high precision positioning service is expected to grow rapidly in Asia-Pacific region and contributes economic growth in the region.
- The needs in Brunei have been surveyed and analyzed. Authorization of "Mapping" by the government would be an essential to assure its consistency with "Positioning". Authorized CORS*is a key to assure consistency within the map and "Positioning".

* Continuously Operating Reference Station

 Conceptual Design of "Positioning Augmentation Center" using CORS data has been made considering variety of applications.

1. Introduction-CMAS*

Satellite based centimeter class augmentation system (CMAS)

CMAS using GPS/GNSS multi-constellation, Authorized CORS is distributed through QZSS LEX signal.

X This figure shows a case of Application Demonstration since 2011

1. Introduction-Utilization Demonstrations

Positioning GPS Buoy GPSブイへの適用検討

Sea route experiment 航路実験

Driving experiment in case of an earthquake disaster 震災時の走行軌跡実験

Air route experiment 空路実験

Bulldozer Blade Control System ブレード自動制御

Action support Application Urgent information reception
— Refuge place display

Combine Automatic Run コンバイン自動稲刈り

Overnight Operation 夜間耕耘作業

Automated System Operation 無人運転

Navigation for Stamp Rally スタンプラリーナビ

Location Guidance System for visually-impaired person 視覚障碍者へのガイダンスナビ

Senso-ji Navi experiment

Survey in a forest

Survey

1. Introduction-Growing Potential Market of

High precision positioning service

Asia-Pacific accounted for over 50% of global LBS shipments in 2016

GNSS Market Report Issue 5, May 2017

• Why Geospatial Information is so important?

-Geospatial Information is social infrastructure to support daily life of the people

- Land Development of the nation and local areas
- Development and Maintenance of Infrastructure
- Water Environment, Biological System
- Urban Problems
- Disaster Mitigation,
- How Geospatial Information to be established, maintained, efficiently?
 - standardization
 - Integration on the same basis
 - Information Sharing

"Positioning "and "Mapping" should be based on the same accuracy and get together for installation and control!

How does Geospatial Information work in Brunei?

- Market Survey is done to make a strategic approach for establish "Geospatial Information " infrastructure in Brunei

Potential Users

- Government Agencies:31
- Private Industries:7
- **D** <u>Possible Applications</u>

Analysis

- Positioning Accuracy
- Map Accuracy
- Measurement Technology

SEEDS SOARTECH ENGINEERING ENHANCEMENT DEVELOPMENT & SERV	ices	X	
---	------	---	--

Potential Brunei End-Users for Brunei Permanent GNSS Network:

		Accu	iracy	Measurement Technologies										
	Potential Users	Positioning	Мар	RTK	DGNSS	тs	MMS	Lidar	Photo	Sensing	UAV	TSL	IMU	ΝМВ
1	Land Department	cm	Special map	0		0								
2	Survey Department	cm∼m	Level500 ~200000	0	0	0	0	0	0	0				
3	Housing and Development Department ,Town and Country Planning	cm	Level500 ~2500	0		0				Sam	oles	;		
4	Environment Park and Recreation (JASTRE)	m	Level250 0 ~5000		0									
5	Authority for Building Control and Construction Industry	cm∼ Decimeter	Special map	0		0								
6	Public Water Department	cm~ Decimeter	Level500 ~2500	0		0	0	0	0					
7	Public Works Department	cm∼ Decimeter	Level500 ~2500	0		0	0	0	0					

Measurement technology available in each field (30field)

Map accuracy required in each field (30field)

The latest satellite positioning methods had better be classified in following 3 steps.

Comparison of Centimeter-class Augmentation Generation Methods

Augmentation Generation Method		Augmentation Generation Method			Positioning Accuracy (rms)	Data Transmission	Nation-wide Broadcast volume	TTFF	Real- time	Adaptability for moving vehicles
Network RTK		Absolute	SSR	3cm	One Way	1695 bps	within 1min	Yes	Adaptable	
	Positioning	FKP	3cm	One Way	1.5Mbps	within 30s	Yes	Adaptable		
	Relative Positioning	VRS	3cm	Two Way	l	within 30s	Yes	Adaptable only near virtual reference stations		
RTK (Relative Positioning)			3 cm	Two Way	_	within 30s	Yes	Adaptable only near reference stations		

[Note] FKP: Flaechen Korrektur Parameter (in the German language), VRS: Virtual Reference Station

SSR has advantage in applying to Nation-wide broadcasting cost effectively by;

- 1. One way data transmission
- 2. Small data transmission rate

Data Distribution			Netw	Examples		
	Met	hods	Capacity	Coverage	Cost	
Ground Network	One Way	 Radio Broadcasting 	Δ	Δ	0	• DGPS using radio freq.
	Two Ways	 Fixed Line Internet 	0	×	0	 Global augmentati on service
		Mobile P	Mobile Phone	0	Δ	Δ
Satellite Network	One Way	 Broadcasting Type Satellite Usage 	0	0	0	 EGNOS using Inmarsat CMAS using QZS
	Two Ways	 Communication Type Satellite Usage 	0	0	×	 Global augmentati on service

DGPS: Differential GPS using radio frequencies

SBAS: Space Based Augmentation System using Geostationary Satellite

4. Typical design of Augmentation Data Center

SSR Server developed by SPAC can generate "augmentation data" to correct position error due to ionosphere, troposphere, etc. The data are universally applicable to any positioning method to be chosen for Forest Management or other purposes.

[NOTE] SSR : State Space Representation. Standard Corrections for all types of error factors.

4. Typical design of Augmentation Data Center

SPAC

(Case study for Brunei)

Network Coverage for High Precision Services

(Case study for Brunei)

Prio rity	Application	Expected Working Area	Mobile Phone Coverage	Remarks
1	Constructi on	Urban area	95%	Better coverage in Urban Areas since more development at Urban.
2	Transport	Urban and Certain Rural Areas	70% (Certain areas no coverage at all)	Old highway infrastructure has better coverage. New highway from Telisai to Lumut has limited coverage.
3	Mapping	Urban area is the first priority	80%	Better coverage in Urban Areas.
4	Oil & Gas	Onshore(Coastline/Offsho re using their offshore radar reception)	60%	Oil Rigs, Platforms and Jetty Control Post.
5	Farming	Forest/Certain Rural Areas	40% Very weak	Very low and limited coverage.
6	Forestry	Certain Forest/Inlands/Onshore	Less than 40% Extremely weak	Very low and limited coverage.

Satellite Network Usage for High Precision Services

'Centimeter in seconds at anyplace and anytime'

started on 27 Dec 2010.

20

6. Conclusion

- High precision augmentation system is very much promising technology in coming Multi-GNSS era.
- Surveyed results the needs of Geospatial Information in Brunei have suggested that authorization of "Mapping" and "Positioning" is very much important.
- Authorized CORS* is a key to assure consistency between Map and Positioning.
- Conceptual Design of "Positioning Augmentation Center" using CORS has been made considering variety of applications. SSR method has been focused.
- Geospatial Information should be stored, exploited and shared as "Treasure" of commodity.
- CORS : Continuously Operating Reference Station
- SSR : State Space Representation

Thank you for your kind attention.

Presenter : Yasushi SAKURAI Satellite Positioning Research and Application Center (SPAC) KikaiShinko-Kaikan Bldg 4th Floor 3-5-8 Shibakoen Minato-ku, Tokyo, Japan E-mail sakurai.yasushi @ eiseisokui.or.jp

Complementary Slides

Items			Specification	Remark
Broadcasting Target			Stationary and Mobile	 Use dual frequency carrier phase (When using single frequency carrier phase, only TTFF degrades.)
	Stationary	Horizontal	3 cm RMSE	
Position	Stationary	Vertical	6 cm RMSE	
Accuracy	Mobile	Horizontal	3 cm RMSE	 4 km/hr representing low-speed
		Vertical	6 cm RMSE	 40 km/hr representing middle-speed
Time To Fi	rst Fix (TTFF)		within 60 s	 Using dual frequency carrier phase
Transmiss Augmenta	ion Rate of ation Data		1695 bps	 QZSS L6 signal 1/1000 High-level compression

(*1) : Position accuracy under condition of good visibility and alignment of satellites

(*2) : Receiver error not considered.

ISO 18197 : Centimeter-class positioning

CMAS is original system which derived ISO 18197 in 2015. It can convert position errors due to 6 different causes into one set of augmentation data, pseudorange and carrier-phase, so that the augmentation data volume to be broadcasted becomes far smaller than conventional methods.

INTERNATIONAL STANDARD

ISO 18197

Space systems — Space based services requirements for centimetre class positioning

Systèmes spatiaux — Exigences de services fondés sur l'espace pour le positionnement de la classe centimètre

Augmentation Data by State Space Representation (SSR)

GNSS Orbit Correction
 GNSS Clock Correction
 GNSS Code Bias
 GNSS Phase Bias
 Ionospheric Correction

(6) Tropospheric Correction

These augmentation data are provided by SSR server.

RTK-PPP has all of corrections to realize centimeter-accuracy. Partial uses of corrections enable various needs at terminals.

Glossary

CORS Continuously Operating Reference Station G. Government GIS Geographical Information System GNSS **Global Navigation Satellite System** HW HardWare I/F **InterFace** LIDAR Laser Imaging Detecting And Ranging Networked Transport of RTCM via Internet Protocol (RTCM **Ntrip** 10410.1) Managing GNSS Network (SEGAL) mgn MMS Mobile Mapping System Quasi-Zenith Satellite (G. of Japan) QZS QZSS Quasi-Zenith Satellite System (G. of Japan) RINEX Receiver INdependent EXchange Format (RTCM SC-104) Radio Technical Commission for Maritime services RTCM RTK Real-Time Kinematic GNSS data (RTCM 10402.3 and 10403.2) State Space Representation (RTCM 10403.2) SSR **SoftWare** SW